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Abstract. Current-voltage (J-V ) and differential-conductivity-voltage (dJ/dV -V ) characteristics are ana-
lytically calculated at zero temperature for a point contact consisting of: two Peierls conductors Pı (ı = 1, 2)
separated by an insulator (I). Here P is a conductor with charge density wave (CDW). The J-V and dJ/dV -
V characteristics depend on the CDW phases ϕı (ı = 1, 2) in the mean field approximation. To calculate
them analytically we assumed, ∆P1 = ∆P2 ≡ ∆ where ∆Pı (ı = 1, 2) are the energy gaps of Pı (ı = 1, 2).
The current J has a discontinuous jump at eV = 2∆ for ϕ1 = ϕ2 6= 0. The differential conductivity dJ/dV
has a singularity at eV = 2∆ for ϕ1 = ϕ2 6= 0. The relation J(V, ϕ1, ϕ2) = −J(−V,ϕ1 + π, ϕ2 + π) is
obtained.

PACS. 71.45.Lr Charge-density-wave systems – 73.40.Gk Tunneling

1 Introduction

Charge density waves (CDW) can be characterized by the
complex order parameter. The phase ϕ is very important
and the fluctuation of the phase corresponds to sliding mo-
tion, which produces remarkable behavior, like non-Ohmic
conductivity [1] and narrow band noise [2]. The fluctua-
tion of the phase in bulk systems has already received
much attention in the last few decades [3].

In contrast, the CDW tunnel junctions have been in-
vestigated little in the mean field approximation. So far,
the dependence of the current on the CDW phase ϕ has
been investigated for P1-I-P2 and P-I-N junctions where
P, I, and N denote a Peierls conductor, insulator and
normal metal, respectively [4–8]. A Peierls conductor is
a conductor with CDW. In 1983 and 1984, Artemenko
and Volkov [4,5] treated the three-dimensional P1-I-P2

and P-I-N junctions using the Keldysh technique. They
introduced random potentials in the planes of the junc-
tions and averaged the currents over random potentials,
obtaining the results corresponding to those for quasi-
particle tunneling across S1-I-S2 and S-I-N junctions, re-
spectively where S denotes a superconductor. In 1990,
Munz and Wonneberger [6] treated the same junctions
with the conventional tunnel Hamiltonian approach. They
averaged the currents over the phases of the tunnel ma-
trix elements, and obtained similar results to theirs. In
1996, Tanaka et al. [8] treated the one-dimensional P-I-
N junction by solving the Bogoliubov-de Gennes equa-
tion for CDW. Without averaging the conductance like
Artemenko et al. and Munz et al., they showed that
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the conductance is dependent on the CDW phase ϕ, but
Artemenko et al. and Munz et al. showed that the term
dependent on the CDW phase ϕ vanished in their averag-
ing for the three-dimensional P-I-N junction. Additionally,
Artemenko et al. and Munz et al. showed that the terms
dependent on the phases ϕi(i = 1, 2) i.e., the terms pro-
portional to cos(ϕ1 + ϕ2) and cosϕ1 − cosϕ2 vanished in
averaging for the three-dimensional P1-I-P2 junction.

In this paper, we reinvestigate the dependence of
the current-voltage (J-V ) and differential- conductivity-
voltage (dJ/dV -V ) characteristics on the CDW phases
ϕı (ı = 1, 2) for the one-dimensional P1-I-P2 junction
(a point contact) in the conventional tunnel Hamiltonian
approach where we need not average the current as
above. Therefore, we can investigate the current includ-
ing the terms which vanish due to averaging. Addition-
ally, we show that our results include those Gabovich and
Voitenko [9] have obtained for ϕ1 = ϕ2 = 0, π.

The paper is organized as follows. In Section 2, the
general expression for the tunnel current J is presented for
P1-I-P2 junction in the conventional tunnel Hamiltonian
approach. The current J is expressed using the Green’s
functions of P. Firstly, the Hamiltonian of P is given in
the mean field approximation, then, the Green’s functions
are written down. Finally, the general expression for the
tunnel current J is presented for the junction. In Section 3,
the dependence of the J-V and dJ/dV -V characteristics
on the CDW phases ϕı (ı = 1, 2) is analytically calcu-
lated at zero temperature for the junction. The results
are discussed in Section 4. In Section 5, the conclusions
are presented.
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Fig. 1. The geometry for a P1-I-P2 junction (a point contact)
where P and I denote a Peierls conductor and insulator, respec-
tivly. Charge density wave (CDW) appears along the x axis,
and the insulator I exists at x = 0.

2 General expression for tunnel current

The general expression for the tunnel current J is pre-
sented for a P1-I-P2 junction (see Fig. 1) in the mean field
approximation. The junction is a one-dimensional point
contact. For simplicity, the right- and left-hand electrodes
of the junction include no impurities. The current J is ex-
pressed using the Green’s functions of P. In this paper,
the conventional tunnel Hamiltonian approach [10,11] is
used.

Here, the Hamiltonian of P is presented in the mean
field approximation. The Hamiltonian of P (HP) is pre-
sented in the form [9]

HP =
∑
kσ

ξka
†
kσakσ −

∑
kσ

(a†kσak+2kFσ∆eıϕ + h.c.), (1)

where ∆ and ϕ are the amplitude and phase of the order
parameter of P, respectively, and kF is the Fermi wave
number. The first term is the free-electron Hamiltonian.
The operators a†kσ (akσ) are the creation (annihilation)
operators of an electron with wave number k (h̄ = 1) and
spin projection σ.

From the above Hamiltonian, the Green’s functions
of P are presented at finite temperature (T 6= 0). The
Green’s functions of P are presented in the form [12]

G++(k, ıpn) =
ıpn + ξk+kF

(ıpn)2 − (ξ2
k+kF

+∆2)
, (2)

G+−(k, ıpn) =
∆eıϕ

(ıpn)2 − (ξ2
k+kF

+∆2)
(3)

where pn = (2n + 1)πT (kB = 1), n = 0,±1,±2, ...
The Green’s functions G++(k, ıpn) and G+−(k, ıpn) are
Fourier transforms of G++(k, τ) = −〈T τak+kF(τ)a†k+kF

〉P
and G+−(k, τ) = −〈Tτak+kF(τ)a†k−kF

〉P, respectively
where ak+kF(τ) = exp(τHP)ak+kF exp(−τHP), and the
operator Tτ denotes the Wick time-ordering operator.
Here we have abbreviated spin projection σ, and defined
the average

〈· · ·〉P =
Tr{e−HP/T · ··}

Tr{e−HP/T } · (4)

The current J can be presented by using these Green’s
functions. Here the conventional tunnel Hamiltonian ap-
proach is used. The total Hamiltonian H is expressed as

H = HR +HL +HT. (5)

The terms HR and HL describe the right- and left-hand
electrodes of the junction. We assume that the tunneling
occurs at x = 0, so that the tunnel Hamiltonian HT can
be presented as follows:

HT =
∑
k,p,σ

T̃ a†kσapσ + h.c., (6)

where T̃ are the tunnel matrix element independent of k
and p. Hereafter k and p denote the wave numbers in the
right- and left-hand sides, respectively.

The general expression for the current J obtained
in the second order of the perturbation theory in HT

becomes

J = 2eIm{X(ıωn → −eV + ıδ)}, (7)

where δ is positive and infinitesimally small and
ωn = 2nπT, n = 0,±1,±2, ... The voltage V is expressed
as the difference between chemical potentials µR and µL,
i.e., eV = µL − µR where µR and µL correspond to the
right- and left-hand sides of the junction, respectively.
The correlation function X(ıωn) is presented in the form

X(ıωn) =
∑
k,p,σ

∑
k′,p′

|T̃ |2

×
∫ 1/T

0

dτeıωnτ 〈Tτak ′σa†kσ(τ)〉R〈Tτapσ(τ)a†p′σ〉L, (8)

where a†kσ(τ) = exp(τHR)a†kσ exp(−τHR) and apσ(τ) =
exp(τHL)apσ exp(−τHL). Here we have defined the aver-
ages

〈· · ·〉R =
Tr{e−HR/T · ··}

Tr{e−HR/T } , 〈· · ·〉L =
Tr{e−HL/T · ··}

Tr{e−HL/T } ·

(9)

For a P1-I-P2 junction (HL = HP1 and HR = HP2),
the correlation function can be presented by using the
Green’s functions of P

XP1−I−P2(ıωn) = 4T
∑
kp

∑
ıpm

|T̃ |2

×[Re{G++(p, ıpm)G++(k, ıpm − ıωn)}
+Re{G+−(p, ıpm)G∗+−(k, ıpm − ıωn)}
+Re{G+−(p, ıpm)G+−(k, ıpm − ıωn)}
−Re{G++(p, ıpm)G∗++(k, ıpm − ıωn)}
+2ıIm{G++(p, ıpm)}Re{G+−(k, ıpm − ıωn)}
+2ıRe{G+−(p, ıpm)}Im{G++(k, ıpm − ıωn)}], (10)

where the asterisk denotes the complex conjugation.
In Section 3, the current J is analytically calculated

at zero temperature for the junction, using the above ex-
pression.
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3 Results

The current J is analytically presented at zero temper-
ature by calculating the correlation function for a P1-I-
P2 junction. In the analytical calculation, ∆P1 = ∆P2

≡ ∆ is assumed. From the analytical expression, the de-
pendence of the J-V and dJ/dV -V characteristics on the
CDW phases ϕı (ı = 1, 2) is investigated.

For eV > 0, the current J is given by
J = J1 + J2 + J3 + J4, (11)

J1 =
4σ0

e
θ(eV − 2∆)

[
(eV )2

eV + 2∆
K(α)

− (eV + 2∆){K(α)− E(α)}
]
, (12)

J2 = −8σ0

e
θ(eV − 2∆)

∆2

eV + 2∆
K(α) cos(ϕ1 − ϕ2),

(13)

J3 = −8σ0

e
θ(eV − 2∆)

∆2

eV + 2∆
K(α) cos(ϕ1 + ϕ2),

(14)

J4 = −8σ0

e
θ(eV − 2∆)

∆eV

eV + 2∆
K(α){cosϕ1 − cosϕ2},

(15)

σ0 = 4πe2|T̃ |2NRNL, α =
eV − 2∆
eV + 2∆

, (16)

where K(α) and E(α) are the complete elliptic integrals of
the first and second kind, respectively. The function θ(x)
is the Heaviside step function. Here NR and NL are the
densities of states at the Fermi levels in the right- and
left-hand sides, respectively.

From the result, we note four points. Firstly, Ji 6=
0 (i = 1, · · ·, 4) for eV > 2∆. Secondly, the first term J1

corresponds to a quasiparticle current in S1-I- S2 junction.
Thirdly, the second term J2 is proportional to cos(ϕ1−ϕ2),
but the third term J3 is proportional to cos(ϕ1 +ϕ2). Fi-
nally, the fourth term J4 is proportional to cosϕ1−cosϕ2.

To investigate the dependence of the J-V character-
istics on the CDW phases, we consider a simpler case:
ϕ1 = ϕ2 ≡ ϕ. The current J is presented in the form

J =
4σ0

e
θ(eV − 2∆)

[
(eV )2

eV + 2∆
K(α)− (eV + 2∆)

× {K(α)− E(α)} − 2∆2

eV + 2∆
{1 + cos 2ϕ}K(α)

]
. (17)

The current J is a periodic function of ϕ with a period π.
The CDW-phase dependence is shown in Figure 2. From
Figure 2, we note two points. The current J has a discon-
tinuous jump at eV = 2∆ for ϕ 6= 0 (0 ≤ ϕ ≤ π/2). This
jump depends on the CDW phase ϕ

J(2∆+) =
πσ0

e
∆{1− cos 2ϕ}, (18)

where 2∆+ ≡ 2∆+ δ. Secondly, the current J increases as
the CDW phase ϕ (0 ≤ ϕ ≤ π/2) increases.

0

1

2

3

0 1 2 3

J/(4σ0∆/e)
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ϕ=π/2
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Fig. 2. The dependence of the J-V characteristics on the CDW
phase ϕ for a P1-I-P2 junction. The current J has a discontinu-
ous jump at eV = 2∆ for ϕ 6= 0 (0 ≤ ϕ ≤ π/2) which increases
as the CDW phase ϕ (0 ≤ ϕ ≤ π/2) increases.
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Fig. 3. The dependence of the dJ/dV -V characteristics on the
CDW phase ϕ for a P1-I-P2 junction. The differential conduc-
tivity dJ/dV has a singularity at eV = 2∆ for ϕ 6= 0 (0 ≤
ϕ ≤ π/2) which increases as the CDW phase ϕ (0 ≤ ϕ ≤ π/2)
increases.

Next, we investigate the dependence of the dJ/dV -V
characteristics on the CDW phase ϕ in the conditions:
eV > 0 and ϕ1 = ϕ2 ≡ ϕ. The differential conductivity
dJ/dV is given by

dJ
dV

= 4σ0θ(eV − 2∆)
[

1
(eV + 2∆)(eV − 2∆)

K(α)

×{(6∆2 − 4∆eV ) + 2∆2 cos 2ϕ}

+
1

eV (eV − 2∆)
E(α){(eV )2 − 3∆2 −∆2 cos 2ϕ}

]
·

(19)

The CDW-phase dependence is shown in Figure 3. We
note, the differential conductivity dJ/dV has a singularity
at eV = 2∆ for ϕ 6= 0 (0 ≤ ϕ ≤ π/2). For eV = 2∆+ and
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ϕ = 0, this becomes

dJ
dV

= 2πσ0 < +∞. (20)

Also, the differential conductivity dJ/dV increases as the
CDW phase ϕ (0 ≤ ϕ ≤ π/2) increases.

For eV < 0, the current J can be represented using
the relation J(V, ϕ1, ϕ2) = −J(−V, ϕ1 + π, ϕ2 + π) which
we have already obtained.

4 Discussion

Now we discuss the results obtained in Section 3, i.e.,
the dependence of the J-V and dJ/dV -V characteris-
tics on the CDW phases ϕı (ı = 1, 2) for a P1-I-P2

junction in comparing with a S1-I-S2 junction. First,
we discuss the J-V characteristics. The first term J1

is generated by the terms Re{G++(p, ıpm)G++(k, ıpm −
ıωn)} and Re{G∗++(p, ıpm)G++(k, ıpm − ıωn)}, and cor-
responds to the quasiparticle current in the S1-I- S2

junction [4,5]. The second term J2 is generated by
the term Re{G+−(p, ıpm)G∗+−(k, ıpm − ıωn)}, and cor-
responds to the interference current in an S1-I- S2

junction. The third term J3 is generated by the term
Re{G+−(p, ıpm)G+−(k, ıpm − ıωn)}, and does not exist
for an S1-I- S2 junction because G+− corresponds to F
and the current can not be generated by the term FF for
the S1-I- S2 junction. The fourth term J4 is generated by
the terms Re{G+−(p, ıpm)}Im{G++(k, ıpm − ıωn)} and
Im{G++(p, ıpm)}Re{G+−(k, ıpm − ıωn)}, and does not
exist for an S1-I- S2 junction, either because the current
can not be generated by the term GF for an S1-I- S2 junc-
tion. The terms Jı (ı = 1, · · ·, 4) have discontinuous jumps
at eV = 2∆ because of the mutual action of singular den-
sities of states on both sides of the barrier.

There are three main differences between the P1-I-P2

junction and the S1-I-S2 junction. Firstly, for the P1-I-P2

junction the current J does not include the term propor-
tional to sin(ϕ1−ϕ2), i.e., the Josephson current because
the uncertainty relation [N,ϕ] = ı (where N is the total
particle number) does not exist. Secondly, the current J
includes the term proportional to cos(ϕ1+ϕ2). Finally, the
current J includes a term proportional to (cosϕ1−cosϕ2).

Artemenko and Volkov [4,5] have investigated the
same junction using the Keldysh technique. They obtained
the same results, but the two terms J3 and J4 are absent
due to averaging over the random potential.

On the other hand, Munz and Wonneberger [6] have
treated the same junction in the same approach, i.e., the
conventional tunnel Hamiltonian approach, but the two
terms J3 and J4 vanish as a result of averaging over the
phases of the tunnel matrix elements.

There are two reasons why we have not averaged the
current like Artemenko et al. and Munz et al. (1) We have
considered a one-dimensional system, so that we need not
necessarily to introduce the random potential in the plane
of the junction. (2) We assume that the tunneling occurs

at one point x = 0, so that the tunnel matrix element T̃
is independent of the wave numbers k and p.

For ϕ1 = ϕ2 ≡ ϕ (ϕ = 0, π), Gabovich and
Voitenko [9] investigated the same junction and obtained
the relation J(V, ϕ1 = ϕ2) = −J(−V, ϕ1 = ϕ2). We
obtain a more general relation J(V, ϕ1, ϕ2) = −J(−V,
ϕ1 + π, ϕ2 + π). For ϕ = 0, the current J is continuous
at eV = 2∆ because the jump in J2 + J3 has the op-
posite sign and totally compensates the jump in J1. For
ϕ 6= 0 (0 ≤ ϕ ≤ π/2), the current J has a discontinuous
jump at eV = 2∆, and the jump is dependent on the CDW
phase ϕ because the current J includes the third term J3

which is proportional to cos 2ϕ. On the other hand, for an
S1-I-S2 junction, a jump also exists at eV = 2∆S where
∆S is the energy gap of S, but the jump is independent of
the S phase φ (φ1 = φ2 ≡ φ) because the current is not a
function of the sum φ1 + φ2.

Next, we discuss the dJ/dV -V characteristics. For
ϕ1 = ϕ2 ≡ ϕ (ϕ = 0, π), Gabovich and Voitenko [9] ob-
tained the relationship

d
dV

J(V, ϕ1 = ϕ2) =
d

d(−V )
J(−V, ϕ1 = ϕ2), (21)

but from the expression J(V, ϕ1, ϕ2) = −J(−V, ϕ1 +
π, ϕ2 + π) we obtain

d
dV

J(V, ϕ1, ϕ2) =
d

d(−V )
J(−V, ϕ1 + π, ϕ2 + π). (22)

For ϕ = 0, the differential conductivity dJ/dV has a dis-
continuous jump at eV = 2∆, while for ϕ 6= 0 (0 ≤ ϕ ≤
π/2), dJ/dV has a singularity at eV = 2∆, which is de-
pendent on the CDW phase ϕ due to the term dJ3/dV
which is proportional to cos 2ϕ. On the other hand, for an
S1-I-S2 junction, a singularity also exists at eV = 2∆S,
but it is independent of the S phase φ (φ1 = φ2 ≡ φ)
because the differential conductivity is not the function of
the sum φ1 + φ2.

5 Conclusions

We have investigated the dependence of the J-V and
dJ/dV −V characteristics on the CDW phases ϕı (ı =
1, 2) at zero temperature for the one-dimensional P1-I-P2

junction (the point contact) in the conventional tunnel
Hamiltonian approach. The current J has a discontinu-
ous jump at eV = 2∆ for ϕ1 = ϕ2 ≡ ϕ 6= 0, while
the differential conductivity dJ/dV has a singularity at
eV = 2∆ for ϕ 6= 0. We have also obtained the relation
J(V, ϕ1, ϕ2) = −J(−V, ϕ1 + π, ϕ2 + π).

In this paper, we have considered a system in which
both electrodes include no impurities. This means that the
CDW phases ϕı (ı = 1, 2) are independent of the position
in the Peierls conductors, i.e., ϕı (ı = 1, 2) are constant.
Therefore, when there are impurities in P1 and P2, the
results obtained in this paper are not applicable. In the
future, we will consider the effect of the impurities.

The author would like to thank S. Kurihara and S. Ohtuka for
useful discussions.
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